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Abstract 

The symmetry group of the coincidence site lattice 
(CSL) is used for the study of the properties of triple 
junctions formed by plane boundaries. The experi- 
mental evidence that there are junctions with an 
obviously symmetrical relationship among the adja- 
cent planes is analysed systematically. The analysis 
concerns the triple junctions in which the grain boun- 
daries (GBs) are described by 180 ° CSL rotations. 
For these triple junctions the common intersection is 
a CSL rotation axis of the three GBs. Two cases need 
to be distinguished. In the first case the common 
intersection is a symmetry axis of the three CSLs, 
while in the second case the common intersection is 
a general direction. Thus in the first case the corre- 
sponding symmetry element is a common symmetry 
element of the three CSLs participating in the 
junction. 

I. Introduction 

In the framework of grain boundary (GB) structural 
studies many different observations have been 
reported dealing with the study of the intersections 
of GBs, i.e. interfaces which meet each other at multi- 
ple junctions or faceted interfaces (Komninou, 
Karakostas, Bleris & Economou, 1982; Vaudin, 
Cunningham & Ast, 1982; Sukhomlin & Andreeva, 
1983; Komninou & Karakostas, 1984; Fionova, 1985; 
Iijima, 1987). A detailed account of rules concerning 
GB configurations during grain growth from the ther- 
modynamical and topological points of view is given 
in a very recent review (Atkinson, 1988). In this paper, 
the mutual symmetry relations among the various 
grains of the junction and their connection with the 
CSL model are not taken into consideration. 
Moreover, an important question is whether there 
exist simple geometric criteria for low interfacial 
energy for any GB structure. This question has been 
extensively analysed by Sutton & Balluffi (1987) who 
concluded that there is no simple answer. They sug- 
gest a more fundamental physical study for the rela- 
tion of the structural and energetic properties of grain 
boundaries. In this particular study some faceted GBs 
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have also been examined from the energetic point of 
view. Almost all of these faceted GBs might be con- 
sidered as a joint pattern of double and triple junc- 
tions. Consideration of the atomic structure and the 
details of the bonding at the interface show that the 
symmetry properties of interfacial configurations can 
be a useful tool because symmetry is an abstraction 
which serves as a guide for many developments. From 
our study of polycrystalline materials and from the 
observations reported in the literature we have seen 
that in junctions with thermodynamically favorable 
CSL boundaries some systematic symmetry proper- 
ties exist. Numerical identifications of these systems 
are obtained by the use of CSL rotational operations 
such as those proposed by Warrington (1979) for CSL 
triple junctions. Such identifications can be used for 
the prediction of all possible CSL junctions and are 
based on relationships between coordinate systems, 
but cannot give the symmetry properties of the inter- 
faces. 

We argue below that all triple junctions can be 
classified into two categories in a unique way. The 
first category contains junctions formed by special 
GBs, i.e. GBs described by 180 ° CSL rotations. The 
second category contains junctions where some or 
all GBs are not 180 ° CSL boundaries. These two 
categories have the critical distinction that some sys- 
tematic symmetry properties are present in the first 
which are absent in the second. Our interest is focused 
on the first category only, since the special GBs retain 
the coherence of the structure as much as possible, 
as was first suggested by Friedel (1926). Moreover, 
in the first category we have seen that there are cases 
where the common intersection is a symmetry axis. 
The corresponding symmetry element is a member of 
the symmetry group of each of the three CSLs par- 
ticipating in the junction. For this type of junction 
the intersection retains continuity in the three GBs. 
For the special GBs the breaking of the initial sym- 
metry (the symmetry of the single crystal) implies the 
elimination of at least one symmetry element of the 
initial symmetry group. This dissymmetrization pro- 
cess has been analysed extensively by Pond (1989). 

Application oi our analysis is made on two typical 
examples, one of which has already been experi- 
mentally confirmed (Komninou & Karakostas, 1984). 
The general physical property which can be estab- 
lished by our results is that there are junctions in 
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which the common intersection has the property of 
keeping a common symmetry element in the com- 
posite lattice. 

2. Description of a triple junction 

If we consider the junction of three grains whose 
lattices are A~, i = 1, 2, 3, there are three rotation 
matrices Ri, i = 1, 2, 3, giving the relation between 
the three lattices one by one. By expressing the three 
matrices in the same coordinate system the mutual 
relation of the grains is described by 

e 3 = e l e 2 1  (1) 

Warrington (1979) was the first to point out that if 
two of the above matrices describe a CSL rotation 
relationship then the third matrix also represents a 
CSL rotation matrix. This property immediately 
implies a relation between the multiplicities 2; of the 
three CSLs, and it can be shown that there also exists 
an equation of the form 

X,3 = 1;11;2. (2) 

Many applications of the above description of a 
triple junction have already been made in different 
polycrystalline materials (Perevezentsev, Shcherban, 
Soldatov & Belov, 1982; Komninou et al., 1982; 
Sukhomlin & Andreeva, 1983; Komninou & Karakos- 
tas, 1984; Hasimoto, Fujii & Miura, 1987). Moreover, 
its simple form allows its use for the experimental 
characterization of a junction, if one also uses the 
convenient algorithms that exist (Bleris, Karakostas 
& Delavignette, 1983). Typical examples of this pro- 
cedure have been reported elsewhere (Komninou et 
al., 1982; Komninou & Karakostas, 1984). The first 
of them concerns a fully characterized triple junction 
by means of relation (1). It is the 1; = 3, 13, 39 CSLs 
case where the third GB, i.e. X = 39 CSLs, lacks a 
180 ° description. The second concerns a fully sym- 
metric triple junction with 2 = 3, 3, 9 CSLs where 
the GBs are special. In this case one can characterize 
the junction very quickly. Since the rotation axes are 
perpendicular to the GBs the dihedral angles are 
directly estimated by the corresponding angles of the 
axes. Nevertheless (1) cannot be used for theoretical 
predictions without some assumption being added. 
For example, we cannot get information about the 
common intersection axis and the symmetry of the 
participating CSLs a priori. In what follows we shall 
consider only triple junctions with special GBs. 

Following our previous assumption we shall con- 
sider two of the operators, i.e. RI and R2, to describe 
CSL rotations of 180 °. It is rather obvious that these 
operators can describe the special CSL boundaries 
and rotate across a crystallographic plane, according 
to the natural rule which produces the grain bound- 
aries of a given material. Since RI and R2 are rotation 
operators of 180 ° the operator R3 is exactly defined; 

it is a rotation around an axis perpendicular to the 
axes of RI and R2 through an angle 2q~ (where ~ is 
the angle between the axes of R~ and R2). This axis 
is the common intersection axis of the three bound- 
aries participating in the junction (Landau & Lifshitz, 
1952). 

Recalling that a given CSL rotation operation is of 
the form gjR, where gj is a symmetry element of the 
symmetry group G of the parent lattice (Doni, Bleris, 
Karakostas, Antonopoulos & Delavignette, 1985), we 
shall examine the case that the axis r of the rotation 
R 3 is also a CSL rotation axis of one of the other 
two. Then the following relations should simul- 
tanously hold: 

g3r  = r 
(3) 

g j R ~ r =  r, 

from which it is obvious that 

R l r  = g f l r .  (4) 

By making use of relation (1) and of the fact that R1 
and R2 are 180 ° operators we get from (4) 

R 2 R 3 1 r  = R2r = g f l  r, 

or  

gjR2r = r, (5) 

which means that r is also a CSL rotation axis of the 
third CSL. Thus, if the triple junction contains two 
special CSL boundaries and their intersection is a 
CSL axis for one of them, then it is a common CSL 
rotation axis for the three grains. This kind of junction 
forms one category of triple junctions. Another 
category is that in which the axis of the rotation R3 
is a CSL rotation axis for this rotation only. An 
example of this category of junctions is the triple 
junction of 1; = 3, 13, 39 CSLs studied by Komninou 
et al. (1982). In this case the intersection axis is the 
[283] axis, which is a CSL rotation axis only of 1; = 39 
CSL. We adopt the terminology 'CSL triple junctions' 
for the first category of junctions. 

3. Symmetry properties 

In order to study CSL triple junctions we need to 
make use of some symmetry properties of the CSL. 
We recall the meaning of the sublattice A~ of the 
parent lattice. The existence of this sublattice is the 
necessary condition in order for a CSL to be formed 
(Doni et al., 1985). The symmetry of .1~1 is given by 
the symmetry group 

G , ,  = H + R H ,  (6) 

where H is a subgroup of G and R is the CSL 180 ° 
operator describing the GB. By taking into account 
the fact that H is a subgroup of G we can decompose 
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G into left cosets (Van Tendeloo & Amelinckx, 1974): 

G = g ~ H + g 2 H + . . . + g p H ,  (7) 

where g~=E,  g i e G ,  i = l , 2 , . . . , p  and gi~H. The 
integer p is the ratio of the orders °G of G and °H 
of H as is implied by the Langrange theorem (Bradley 
& Cracknell, 1972). Let g ( ~  E) be any element of 
G; then by using the decomposition (7) we can take 
g = gih and 

gA { = g,hA { = ga  {g (8) 

is a variant of A ~. Moreover every element g belong- 
ing to a coset in (7) produces one and only one 
variant; there are at most p variants. Any physical 
property concerning the sublattice A{ can also be 
considered to exist on any other variant of A 1~. This 
remark allows the investigation of the CSL descrip- 
tions of one and the same CSL taking into account 
that there are as many CSL descriptions as the ele- 
ments of G (Bleris, Doni, Karakostas, Antonopoulos 
& Delavignette, 1985). In order to clarify this property 
let us consider a 180 ° rotation operator RI. Since R~ 
is a symmetry element of Gal we have 

R , A  ',= A ', (9) 

and there is a vector r0 ~ A{ such that 

From (9) we get 

R,ro= ro~ A]. (10) 

[ A I  if g ~ H  (11) 
g ~ G :  g R ' A I = [ A { g  if g ~ H ,  

and it is obvious that there are °H different descrip- 
tions of the same CSL inside the variant A{ and 
( p - 1 ) ° H  descriptions of the same CSL in p - 1  
different variants. Thus a CSL description gR is 
referred to one and only one variant H if the sym- 
metry element g belongs to the subgroup H. 

Let us suppose now that ro is the intersection axis 
of the grain boundaries of a CSL triple junction. Then 
we can always find some symmetry elements of G 
such that 

o r  

h ,R l ro= ro, h,  ~ G 

h.R2ro = to, h. e G (12) 

R3r 0 = r 0 ,  

Rlro =h~lro ,  h~. ~ G 

R 2 r  o = h2~ro, h~ ~ G (13) 

R3ro =- r0, 

and by making use of (1) we get 

R2ro = R ll  ro = Rl ro = h-~l ro • (14) 

By combining (14) with the second of equations (13) 
we obtain for the common axis ro [which belongs to 
A], equation (10)] 

h,  h S ~  = ~ .  (15) 

Equation (15) creates a strong distinction. In fact 
since h~, hS ~ are elements of G their product is also 
an element of G. If h,h-~ ~= E, the identity operator 
of G, then ro may be any CSL vector, but if h,h-~ ~ ~ E 
then r0 is a CSL symmetry axis. Since r0 is a CSL 
axis of the three CSLs, this symmetry axis is a com- 
mon symmetry axis of the three CSLs participating 
in the junction. Thus the symmetry groups of the 
three CSLs contain a common symmetry element. For 
this case we adopt the terminology 'special triple 
junctions'.  Thus there are restricted possibilities for 
the existence of special triple junctions in each crystal 
system. For example, the only special triple junctions 
can exist around the (100), (110) and (111) type of 
axes for cubic CSLs. 

4. Variant description of a triple junction 

We can now summarize the above results as follows: 
if in a given triple junction the intersection axis is a 
CSL rotation axis of the three CSLs, then it may be 
a symmetry axis of the three CSLs. This particular 
case implies that a mutual symmetrical relation may 
exist between the three CSLs. This investigation can 
be based analytically on relation (1). Such an investi- 
gation is a very long process so we shall try to organize 
the symmetry properties on the basis of the properties 
implied by the decomposition of (7). 

At first we recognize that, given two special CSL 
boundaries, whether they are related or not, they can 
have some common CSL characteristics which cannot 
be directly seen, since for every one of them there 
exist many different CSL rotation operations and one 
has to combine them one by one in order to arrive 
at the properties of the third grain boundary. 
However, we know that the symmetry group of a 
given CSL has the form of (6) and a property existing 
in the variant A~ can also exist in any other variant. 
Coming back to (6) and taking into account that R 
is a second-order element we can define the factor 
group F, 

F = G A , , / H  (16) 

of the order °F = 2. Thus GA', is homomorphic to F 
and every h ~ H corresponds to the unit element of 
F, while every element of the form Rh ~ GA', corre- 
sponds to the second-order element of F. Thus the 
symmetry of the CSL given in the variant A{ is com- 
pletely defined by the symmetry group GA', and the 
symmetry of the bicrystal by the factor group F. 

For every CSL operator Rk which describes the 
grain boundaries under consideration a factor group 
similar to that of (16) exists. A correspondence 
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between the different factor groups can be found by 
considering the conjugate groups of the different 
variants. In fact every variant has a conjugate group 
Hg of H given by the equation 

Hg -- g - '  Hg. (17) 

The meaning of (17) is that all the symmetry 
properties of A 11 are transformed by a similarity trans- 
formation into the same symmetry properties in the 
variant Al~g and vice versa. By substituting (17) into 
(6) we get 

G., I = gHgg -~ + RgHgg -~ 
o r  

g-~GAIg = Hg + g-~ RgHg. (18) 

Thus a new factor group is now defined and the 
second-order element of it is g- lRg.  It is rather 
obvious that the symmetry laws referring to different 
variants may or may not be the same, but if we want 
to make a mapping into one and the same variant the 
similarity transformation (18) is always needed. 

We can now make a distinction between some 
special cases. If, for example, gH = Hg holds, then 
(18) becomes 

g- l  GAlg = H + g- l  R g H  (19) 

and if R and g-~Rg are of the same CSL law then 
we have a crystallographically equivalent symmetric 
boundary in the same variant provided that gR # Rg. 
If g H  # Hg we have two special CSL boundaries in 
different variants and the third is defined by the 
equation 

R3 = ( R ) , ( g - '  Rg)2, (20) 

according to (1). Relation (20) is the final relation 
for the characterization of a triple junction and its 
identification according to the CSL model. It is similar 
to the relation proposed by Pond (1989) for the 
characterization of degenerate defects, i.e. defects 
related by symmetry. Since the operators RI and R2 
in the right part of (20) are 180 ° CSL rotation 
operators the operator R3 is a well established CSL 
rotation operator. By contrast, if R~ and R2 are not 
180 ° CSL rotation operators, then the rotation 
operator R3 cannot be a priori defined. Moreover, if 
the common intersection axis is a symmetry axis, then 
the corresponding symmetry element g is such that 

g ~  H n g - l H g  (21) 

and is also a symmetry element of the third CSL. By 
using the expressions giving the rotation angles for 
the CSLs of the cubic system (Bleris et al., 1985), we 
can easily see that if a CSL axis of the type (100), 
(110) or (111) exists, the CSL has at least one 180 ° 
description and the three CSLs forming the triple 
junction are all described by a 180 ° CSL rotation. (A 
similar property can also be found for the hexagonal 
system.) 

5. Application 

We shall present junctions based on the 2 --3 cubic 
CSL twin boundary which is the most favorable cubic 
special CSL boundary from thermodynamic con- 
siderations. In fact a considerable number of these 
systems of grain boundaries has already been 
observed in polycrystalline Si (Komninou, 1987). 
Regardless of the reason for their origin this kind of 
CSL triple junction of Si may be considered as the 
best example since the symmetry of 2 = 3 is described 
by the greatest subgroup H = D 3 o f  O (the symmetry 
group of the cubic lattice). 

The ,~ = 3 forms twotypes of CSL twin boundaries, 
i.e. (111) and (211). We consider first the case which 
is described by a 180 ° rotation around the [ 111] axis, 
i.e. the first-order twin. The second-order symmetry 
element which acts as a twin generator is described 
by the operator 

R = 1 / 3  2 - I  2 . (22) 

2 2 - I  

The symmetry of the CSL is 

G(Z = 3 ) =  H +  R H  (23) 

where 

H = { E ,  C3,, C3,, C2b, C2e, C2¢}. (24) 

The elements of the coset R H  in (23) are 

R1= RC31= ~ 2 2 - 

-1  2 

rotation of 60 ° around the [ 111 ] axis 

[ 1 
2 2 -1 

~ ! R2 RC31 ~ -1  2 2 = R[  l 

2 - 1  2 

-2  1 - 2  

R3=RC2b=½ 1 -2  -2  

-2  -2  1 

rotation of 180 ° around the [112] axis 

R4 = RC2e = ½ 

R5 = RC2f = 

-2  -2  1 

-2  1 -2  

1 - 2  - 2  
rotation of 180 ° around the [12.1] axis 

- 2  -2  

-2  1 - 

rotation of 180 ° around the [211] axis. 
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Table 1. Group multiplication table o f  the group 

E C~, C;l C2b C2~ C2f R RC'~, 
c;, ~ c~ + c~: G~ c~ nc;, R 
C3+~ C~, E C2~ C2.t C2b RC~, RC;, 
C2b C2: C2~ E C~, C3 + RC2b RC2: 
C2e C2b C2f C'~! E C31 RC2e RC2b 
C2f C2e  C2b C33 C3+1 E RC2f RC2e 
R RC3+t RC31 RC2b RC2e RC2f E C'~| 
RC~I R RC'~t RC2f RC2b RC2e C31 E 
RC~I RC~t R RC2~ RC2f RC2b C'~l C~ 
gC2b RC2f RC2~ g RC31 RC3m C2b C2f 
RC2~ RC2b RC2/ gc~l R RC31 C2~ C2b 
RC2f RC2e RC2b RC~! RC"~I g C2/ C2e 

G ( 2  =3)  

RC31 RC2b RC2~ RC2f 
RC3+I RC2f RC2b RC2~ 
g RC2~ RC2/ gczb 
RC2~ R RC31 RC'~t 
RC2f RC~, R RC'~, 
RC2b RC3, C~, R 
c;, c~ c~ c~: 
C~, C2: C2b C2~ 
E C~, C2: C~ 
C2~ E C3, C~, 
c2: c~, E C~, 
C2b C~, C'~, E 

We construct the multiplication table (Table 1), 
where all group properties are included. From this 
table it is easily seen that 

g - l R g  = R 

for all g e G ( 2  = 3), and we cannot find any crystal- 
lographically equivalent boundaries of the same type. 
Thus a possible coexistence of ~ = 3 (111) CSL twin 
boundaries can be found in two different variants. 
We have to analyse the group O of the parent lattice 
according to (7). The easiest way for that is to look 
for a subgroup of O of order 4, i.e. the index of H 
in G. We may easily see that two groups 

Du = {E, Cux, Cuy, C2~} 

C4={E, C2x , C4+x, C ~ }  
(25) 

can be used for the decomposition of (7). The above 
two groups lead to the same type of conjugate sub- 
groups, which are 

Hc2x = C2xHC2x ={E, C33, C3+3, C2a, C2c, C2:} 
Hc~,=CzyHC2y={E,  C34, C3+4, Cza, Cue, C2e} 

nc~z=C2zHCzz={E,  C~2, C3+2, Cub, CEc, C2e}. 
(26) 

The second-order elements of the corresponding fac- 
tor groups (18) for the coset representatives are 

-1  - 2  - 2 ]  

C 2 x R f 2 x  = Rc~x = I - 2  -1  2 
- 2  2 -1  

rotation of 180 ° around the [1 
m ~  

11] axis or the [111] axis 

- 1  - 2  2 ]  

C2yRCEy= Rc2y=1 - 2  -1  - 2  

2 - 2  -1  

(27) 

rotation of 180 ° around the [313] axis or the [ l i l ]  axis 

= I [ - 1  2 - 2  
C2zRf2z  = Rc~z 2 -1  - 2  

- 2  - 2  -1  

rotation of 180 ° around the [113] axis orthe [331] axis. 

The following cases are the only possible ones that 
exist: 

(i) 

(ii) 

(iii) 

Hc~Hc~ ={E, C2f} 

H c~ Hc2y = {E, C2e} 

H c~ H c2~ = { E, C2b }. 

(28) 

The possible third boundary may have as symmetry 
element of the first type a second-order element. The 
rotation axis is of the (110) type and this is the only 
direction for the coexistence of two Z = 3 twins of 
the (111) boundary type. We shall examine only the 
first case from the three equivalent ones of (28). 

Consider the coexistence of twins having (111) and 
(111) boundary planes. The angle between the two 
180 ° axes is 70-53 ° and the corresponding product 
(20) will give a rotation of 141.06 °, the common axis 
is the [031] which is exactly the axis ofthe C2y element 
and the third special CSL boundary is a ~ = 9. Using 
the angles of the rotation axes we can represent the 
possible coexistence geometrically as in Fig. 1. 

As a second example let us take the second-order 
twin which is described by a 180 ° rotation around the 
[211] axis. In this case the corresponding second- 
order element which acts as a twin generator is given 
by the operator E12 ] 

R1 = I  2 - 2  
2 1 - 

(29) 

Its symmetry group is conjugate to the group given 
by (23) and it contains the elements 

H = { E ,  C;3, C33, C2a, C2c, C2f}. (30) 

We can also use the groups (25) for the decomposition 
(7) and we make use of the group (?4. The same 
results are obtained if we use the group D2. 

In this case the second-order elements of the factor 
group (18) are 

1 - 2  

C2xRlC2x = Rc2x 1 - 2  - 2  
- 2  1 - 
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rotation of 180 ° around the [2 i i ]  axis or the [211] axis 

1 2 
-- + 

C4xRiC4x = Rc1.~=l 2 - 2  

- 2  -1  

rotation of 180 ° around the [211] axis or the [211] axis 

C4+ R1f 4x= R c ~  =1 - 2  - 2  
2 -1  

rotation of 180 ° around the [2 i l  ] axis or the [211 ] axis. 

A 15~[~1122 C 

11 ~ 1 / , . ' 1 1 1  111 "-,q~ B 
711 

i1~11 B 

011 

111 

]22 

C 

We shall examine the coexistence of twins having 
(211) and (2 i l )  boundary planes. The angle between 
the two 180 ° axes is 48.19 ° and the corresponding 
product (20) gives a rotation angle of 96.38 ° and the 
common rotation axis which is the [102] axis. The 
third CSL boundary is a E = 9. This is a typical case 
in which the common intersection axis in a CSL triple 
junction is not a symmetry axis. The geometri- 
cal representation of this triple junction is given in 
Fig. 2. 

6. Discuss ion 

We have presented an analytical procedure showing 
that the possible coexistence of special CSL bound- 
aries is uniquely defined by using the CSL symmetry. 
It is rather obvious that our conclusions are indepen- 
dent of those of relation (1). This does not mean that 
(1) is not useful. It is very efficient for the experi- 
mental characterization and recognition of the junc- 
tions (Doni & Bleris, 1989). 

However, this work has concluded that a CSL triple 
junction implies the conservation of the parent lattice 
symmetry as well as the symmetry of a common 
sublattice. This property may be directly connected 
to the idea that some structural building element at 
the microscopic level, i.e. an atomic cluster having 
the conserved symmetry, should exist. The junction 
may be built from this unit and the symmetry elements 
which have been eliminated by the symmetry break- 
ing. However, we have seen an example in which 
two special GBs intersect on a CSL axis but not on 
a symmetry axis. In this case the absence in the 
symmetry continuation may lead to a linear defect 
by taking into account the translational symmetry. 

The authors thank Dr E. G. bon i  for discussions 
on the CSL symmetry properties. 

Fig. 1. The special triple junction of first-order twins { 111 } with 
E = 3 , 3 , 9 .  

B // '~---~.__ 131.81 

162.28/ } 
A 

\ _ 

. . . . .  __is91 211 

c 
. . . .  

221 221 

Fig. 2. The CSL triple junction of second-order twins {211} with 
E =3,3,9.  
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Abstract 
Further studies have been made of the information 
content of the exact linear equations for analyzing 
anomalous dispersion data in one-wavelength experi- 
ments. The case of interest concerns structures 
containing atoms that essentially do not scatter 
anomalously and one type of anomalously scattering 
atoms. For this case, there are three alternative ways 
of writing the equations. The alternative sets of 
equations and the transformations for transforming 
one set into the other are given explicitly. Comparison 
calculations were made with different sets of 
equations. Isomorphous replacement information is 
readily introduced into the calculations and the 
advantage of doing so is clearly illustrated by the 
results. Another aspect of the potential of the exact 
linear algebraic theory is its application to multiple- 
wavelength experiments. Successful applications of 
the latter have been made by several collaborative 
groups of investigators. 

Introduction 
By means of an algebraic analysis in which the contri- 
butions to a structure factor from the real and 
imaginary anomalous corrections to normal atomic 
scattering factors are treated separately from that 
from the normal part, it was possible to develop an 
exact linear system of simultaneous equations for 
extracting phase and intensity information from 
multiwavelength anomalous-dispersion experiments 
(Karle, 1980). The system of equations applies to any 
number and types of anomalous scatterers. 

It was further indicated that essentially unique 
values for the phase differences that occur in the 
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equations can be obtained in a one-wavelength 
experiment for the case of structures composed of 
non-anomalous scatterers and one predominant type 
of anomalous scatterer (Karle, 1985) even though the 
equations in this case contain a twofold ambiguity. 
This is achieved by using a least-squares technique 
for solving the equations in which the process is 
initiated with statistically reasonable starting values 
for the unknown quantities. In the one-wavelength 
calculation, the number of unknown quantities 
exceeds the number of equations by one. Therefore, 
one of the starting values obtained from the statistical 
estimates is held fixed throughout the calculation. 

This investigation is concerned with the case of 
structures composed of non-anomalous scatterers and 
one predominant type of anomalous scatterer (Karle, 
1985). An alternative algebraic description of this 
case was derived by Hendrickson (1987) in which 
somewhat different unknown quantities occur. The 
relationship between the two forms of the equations 
is described here. In addition, a third form for the 
equations is presented. The alternatives combined 
with the original formulation give rise to a new system 
of equations whose characteristics were investigated. 

The purpose of these studies is to examine further 
the information content of the linear algebraic 
equations. One-wavelength data are considered here. 
For one-wavelength data, errors in the unknown 
phase differences depend on the accuracy of the quan- 
tities estimated to make the equations definitive as 
well as the accuracy of the data and the starting values 
for the unknown quantities in a least-squares process. 
The latter values determine whether the more accurate 
of two possible answers in an ambiguous calculation 
will be obtained. 
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